
MiniBooNE Data Collection
Analysis

Fri, Feb 1, 2002

In order to monitor MiniBooNE accelerator operation, time stamped measurements of beam 
profiles and other data need to be collected for each Main Injector ramp cycle of interest. To 
that end, the front-end will log such data for multiple cycles so that the Acnet console has a 
chance to retrieve it. MiniBooNE cycles are 15 Hz cycles, although they may not always be 
consecutive 15 Hz cycles. It is expected that they might occur at an average rate of as much as 
5 Hz. A console that needs to monitor such data will have to collect it at an average rate that 
is fast enough to keep up. If a console made data requests for 1 Hz data, for example, the 
front-end would need to have at least that much data buffered up for delivery to the console.

In order not to wed the front-end logic too closely with the application's plans for displaying 
and analyzing the data, let us assume that the console needs to request the data by MI reset at 
a rate that is sufficient to keep up, but that the front-end does not try to accumulate a 
complete MI cycle of data before making it available to the console application. Let the 
application organize the data it collects in whatever way it sees fit. The front-end should only 
make the data available to the application in a timely manner.

Along with each set of measured data, there will be timing information sufficient to permit 
the application to build up correlated data of interest. Each set of data will be tagged as 
belonging to a given MI reset event and number of 15 Hz cycles following the MI reset event. 
(Even when MI events are accumulated in separate FE buffers, the data should be tagged 
with the reset event, because one of the buffer types includes all MI reset events.)

By collecting the FE data at whatever reasonable rate the application desires, say from 1 Hz to 
5 Hz, the application can display more ongoing data even as the MI cycle proceeds, in order 
to give a better feel to the operator for the real-time accelerator activity. Note that questions 
of how many 15 Hz cycles to collect per MI reset can be decided at the console level; the FE 
does not need to be concerned about it.

The model for buffering can be taken from that provided by data stream support in the IRM 
front ends. For each MiniBooNE cycle, defined as a Booster 0x1D event, measured BPM data 
and other values can be buffered as a record of fixed size written into a data stream of 
suitable size to hold at least a few seconds of data records. The structure of this record must 
be defined to include the time stamp data as well as the measured beam related data. There 
must be at least (N+1) data streams defined, where N is the maximum number of MI reset 
ramp cycles that exist, at least those relevant for MiniBooNE. Within one FE all such 
MiniBooNE data can be recorded in a single record structure. In this way, the time stamp 
information occurs only once for the data records obtained from each front end. (If it is more 
convenient, a separate data stream could be used for each beam related device within a FE, 
but each such data stream record would need the extra overhead of time stamp data in order 
to allow correlation of the received data at the console.)

The console application would make requests for all the relevant devices it needs, and data 
records will flow from each FE, not necessarily synchronously, to the console. The 
application, as it sees the records arrive, should copy it into its own data structures for 
subsequent processing. When it has a set of suitably correlated values, it can see that the 
results are displayed appropriately. If it wants to maintain copies of correlated data for the 
last several MI cycles of particular interest, it can do that. Again, that part of the logic is not a 
concern for the front end. The FE provides the data; the application disposes of it.



Note that different applications acting on the same data simultaneously, but in different 
ways, encounter no conflict here. The delivery of the data to a console does not consume the 
data, so that it is still available for other clients. Requests from different consoles, say at 1 Hz, 
will not necessarily be synchronously delivered at all. But each application in this scenario 
will receive all of the data it desires, whether it matches another application’s interest or not.

To review the logic behind data stream support in an IRM, the data records are written by a 
local application that is designed to collect the right stuff into a record and write it to a 
suitable data stream. (It will probably write the same record into two data streams, since one 
data stream is to contain data relevant for any MI reset.) Once a record is written, it is 
recorded and is available to be delivered to a console in a reply buffer of length specified by 
the application, at a rate specified by the application. The size of data requested should be 
enough to contain a maximum number of records plus 4 bytes to allow for a header that 
includes a count of the number of records that the application will find in the reply buffer.

Consider an example, where the size of each data stream record is 100 bytes. If the 
application makes a 1 Hz request, it might ask for 604 bytes, for example. This specifies a 
reply buffer size sufficient to hold a maximum of 6 records plus the 4-byte header that 
includes the record count. That counter value can range from 0–6, in this example. Note that 
in this case, the application assumes that the average rate of record logging in the data stream 
is not more than 6 records per second. The FE only delivers replies at the rate requested and 
of the size requested; it is the application’s responsibility to ensure that it is fast enough.

There are several choices for an application to request data stream records, according to the 
contents of the SSDN field relevant to the Acnet reading property. For IRMs, the parameter is 
called a listype#. For listype 50 (decimal), the request specifies that data replies start when 
the request is made. It is suitable for delivery of multiple replies but not for one shots. (A one 
shot request will likely yield no records in the reply buffer.) For listype 51, a one shot request 
will fill the reply buffer with as many records as fit, assuming that they exist within the data 
stream queue, and with the last record the most recent. If repetitive replies are requested, the 
first one will have the same selection of records as for the one shot case, with subsequent 
replies including whatever records are recorded as time goes on. For listype 78, the starting 
point will be the oldest record in the queue for building the first reply, or the only reply in 
case of a one shot request. Subsequent replies will move forward from there. This case allows 
for reading out the entire set of data already recorded and available in the queue and then to 
keep up with the new records written as time goes on. Of course, it is the responsibility of the 
requester to specify a suitable reply rate and buffer size to keep up with the ongoing new 
data records. For each reply, the front end remembers where the requester left off, so that the 
next reply continues from that point. This memory is kept with the request, not with the data 
stream queue, so that multiple requests have separate such memories of where each left off.

It is important that the size of each record be known in the above scenarios. The application 
receives a structure that includes a 4-byte header followed by an array of records. The data 
stream is defined, and the corresponding queue is initialized, at front end reset time. An 
alternative is also supported that permits the data stream records to be of variable length. In 
order to permit processing of the reply data, each record is preceded by its size. This may 
complicate processing of the data by the application enough that the fixed record size 
approach is preferred. Obviously, the record size and the size of the queue should be chosen 
with care according to the uses to be put to the data by the various applications that will use 
it. In addition, the detailed structure of the records must be known equally well by the front 
end that records it and the application that interprets it.

MiniBooNE Data Collection p. 2



An alternative approach to periodic replies of MiniBooNE data is clock event based replies. 
Since event 0x1D is used for announcing MiniBooNE cycles, a request can be based upon 
0x1D events, so that replies occur only on cycles in which MiniBooNE data has been 
collected. But this approach is unreliable, because such cycles may occur on consecutive 15 
Hz cycles. RETDAT replies cannot reliably be received by Acnet consoles if they occur one 15 
Hz cycle apart, since console application activity is not synchronized with accelerator 
operation. The fastest rate of reliable collection of replies to RETDAT requests is 7.5 Hz, in 
which the application queries the data pool for reply data at its nominal 15 Hz rate. In 
recognition of this, one might imagine collecting data on every other 0x1D event, but there is 
no way to specify this return logic in a RETDAT request. 

Consider returning data on MI reset events. In this case, the occurrence of the reset event is 
well before the start of MiniBooNE cycles. If it were desired to collect MiniBooNE data on 
0x29 events, for example, it means collecting data from all MiniBooNE cycles following that 
event until the MI ramp completes, or perhaps when the next MI reset event occurs. But the 
next MI reset event may be any MI reset event, so how can the application know which MI 
reset event to specify that will come after the sequence of MiniBooNE cycles of interest? An 
exception might be for the case in which the application wants data from all MI resets; then 
one could specify the any-MI reset event. But there is no way to do that via RETDAT. (One can 
do this via FTPMAN.)

One might consider requesting data for return on a specified MI reset event, anticipating 
receiving the data from the previous such MI ramp cycle. But for infrequent cases, this could 
interpose an unacceptably long delay before the data was delivered. It appears there is no 
way to avoid requesting data via 1 Hz replies, even when there may be no such data present 
in some of the replies.

MiniBooNE Data Collection p. 3


